Montana Comprehensive Assessment System (MontCAS, Phase 2) Criterion-Referenced Test (CRT)

Common Constructed-Response Item Release Mathematics, Grade 10

© 2004 Measured Progress. All rights reserved.

No part of this book may be reproduced in whole or in part, stored in a retrieval system, or transmitted by any means without written permission from the publisher. For information, contact Measured Progress, P.O. Box 1217, Dover, NH 03821-1217.

Printed in the United States of America.

Mathematics Session 1 (Calculator)

You may use a calculator during this session.

- 25. The students in Mr. Taylor's class are studying quadrilaterals.
 - a. Kendrell states that all rectangles are similar.
 - If this statement is true, explain why it is true.
 - If this statement is not true, sketch two rectangles that serve as a counterexample. Explain why the rectangles you drew prove that Kendrell's statement is not true.
 - b. Christina states that all squares are similar.
 - If this statement is true, explain why it is true.
 - If this statement is not true, sketch two squares that serve as a counterexample. Explain why the squares you drew prove that Christina's statement is not true.

BE SURE TO LABEL YOUR RESPONSES (a) AND (b).

Scoring Guide

Score	Description
4	Student gives counterexample in part a, illustrating that all rectangles are not similar (must clearly show and state that corresponding sides are not proportional) AND justification in part b that, for any two squares, the lengths of corresponding sides are proportional and the corresponding angles are congruent.
3	Student gives counterexample in part a, illustrating that all rectangles are not similar AND justification in part b that any two squares are similar; illustration OR justification may be incomplete (e.g., rectangles clearly show non-proportionality but explanation does not address the issue) or contains minor error.
2	Student gives counterexample in part a, illustrating that all rectangles are not similar (must clearly show and state that corresponding sides are not proportional) OR justification in part b that, for any two squares, the lengths of corresponding sides are proportional and the corresponding angles are congruent. OR Student makes correct arguments for both parts but justifications for both are incomplete.
1	Student demonstrates minimal understanding of similarity and/or properties of rectangles and/or squares.
0	Response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.
Blank	No response.

Sample 1

Kendrell's statement is wrong, all restangles and not similar, they all here 2 pairs of 25. A. porrallel'sides, but the two porrs of Sides to not have to be directly proportional, B. Christina 15 right,) all squares have example A. 2 poirs of parrallel sides that are all the Same length, therefore all samaras must be directly propertional,

25. a. Yes, it is true because rectangles have a angles b. Jes, it is true because ognaphie have siles equal lengths and 10° angles.

²⁵ They have only 2 pairs of sides and the sides opposite eachotherare the same length. All angles are 90°. D They have four sides that are equal length and all angles are 90°.

Mathematics Session 3 (No Calculator)

You may NOT use a calculator during this session.

73. The picture below shows the first four terms in a sequence.

- a. How many blocks are in Term 12 of the sequence?
- b. Let *a* represent the number of blocks in Term n. Write an expression that shows how to find the number of blocks in the term **after** Term n.
- c. Let b represent the number of blocks in a term and let n represent the term number. Write an equation to show the relationship between b and n.

Scoring Guide

Score	Description
4	4 points
3	3 points
2	2 points
1	1 point OR Minimal understanding of patterns or algebraic representations.
0	Response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.
Blank	No response.

Training Notes

Part a: (1 point)

• 1 point for the correct number of blocks (34)

Part b: (1 point)

• 1 point for the correct recursive formula (e.g., next term is a + 3, y = a + 3)

Part c: (2 points)

- 2 points for the correct equation (b = 3n 2, or equivalent) OR
- 1 point for the correct constant term, coefficient, or expression

⁷³ A. 24 + 10 = 34⁹ Blocks
B. Number ber of Blocks = prenows Telm + 3.
$$N = A + 3$$

 $\bigcirc B = N \cdot 2 + (N - 2)$

٦

73. (a)
$$34$$
 blocks
(b) $a+3$
(c) $b=3(n-1)+1$

73. Q. 34 blocks 1-1 b. Term $n+3=a2-4$ c. $3n=2=b3-24-105-136-16$	
7-19 8-22 9-25 10-28 11-31 12-34	

Sample 1

. 73. 5-13 a= 34 blocks 6 - 16 7-19 8-22 9-25 10 -28 11 - 31 12 - 34 b. n = a + 3c. n = b4

A) 54 B) 0+30	
() $0+30$	